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The Two-Dimensional One-Component Plasma at 
F = 2: The Semiperiodic Strip 
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The one-component two-dimensional plasma is studied in a strip of finite width, 
replicated periodically parallel to the long axis of the strip. Exact results for the 
one- and two-particle distribution functions are found at coupling F = q2/kT 
= 2. The system is inhomogeneous: the one- and two-particle distribution 
functions show long-range order. 

KEY WORDS: Long-range order; semiperiodic boundary conditions; two- 
dimensional-one-component plasma. 

Recently, several papers (1-7) have discussed exact properties of the two- 
dimensional one-component plasma at a particular temperature. The sys- 
tem is composed of a region A containing N particles of charge q and a 
uniform background charge density - o q .  The system has zero net charge 
so that N = pIN- The energy of a configuration {r I . . . . .  rN} of the charges 
is 

E({r,  . . . .  , ru})  = lq2 lim qS(r) 
r---> rj 

Here the function �9 is the solution of 

+ �89 rj)2] -- P;Ad2r~(r) } 

(1) 

Vaq~(r)=-2~r  ~,  8 ( r - - r j ) - p  (2) 
j = l  
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together with some boundary condition on 3A or perhaps at infinity. The 
particular temperature at which exact results are available is given by 
F = q2/kT = 2: it is possible to calculate the one- and two-particle distri- 
bution functions exactly, as well as the partition function. The results are 
interesting for a number of reasons, not the least being that they are a rare 
example of an exactly soluble continuous system in more than one dimen- 
sion. A more concrete reason for interest in the results is that they provide 
an exact standard against which to test approximate theories and simula- 
tion results for ionic systems. This idea applies particularly to studies of 
surface properties. In a very general context, the exact results have helped 
form the new qualitative insights given by sum rules in ionic sys- 
tems(2, 3, 8-10). They have been most valuable in clarifying the nature of the 
large-distance asymptotic decay of the truncated two-particle distribution 
function along boundaries in semi-infinite systems. In finite-width strips, 
exact results show even more complex behavior in this long-range decay. (7) 

It may be expected then, that exact calculations on a system with 
periodic boundary conditions will be of considerable use in establishing a 
correct interpretation of the results of computer simulations using periodic 
boundary conditions. Such an exactly soluble system has been found (11) 
and we discuss some of its properties here. 

Consider the N particles discussed above in a rectangle A with r = (x, 
y) ~ A if - L/2 < x < L/2 and - W/2 < y < W/2. The potential ~b((x, 
y)) of Eq. (2) may be calculated by writing q~ as a Fourier series in y. Thus 
~5 is periodic in y with period chosen to be W. The series coefficients are 
functions of x and written as inverse Fourier transforms. The charge 
density on the right-hand side of (2) is expanded in the same way and the 
solution found by equating coefficients. This solution allows the potential 
energy E of Eq. (1) to be written in the form (11) 

N--1 N N 

E((r ,  . . . . .  rN}) = q2 ~, 2 q,(rj,rk) + ~roq 2 2 xf+ B N (3) 
j = l  k = j + l  j = l  

Here, Bu is a constant, irrelevant to the distribution functions, and 

Ix,-  x21 q'(rx, r2) = - --~ 

- l l o g { l -  2 e x p [ - - ~ l x l - x 2 l ] c o s - ~ ( y l - y 2 )  

+ e x p [ -  - ~  IXl - x21]} (4) 

The term proportional to Ix 1 - x 2 l  comes from the n = 0 term in the 
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Fourier series solution of (2), while the other terms sum to give the 
logarithmic part of (4). 

This energy may be inserted into the standard formula for the canoni- 
cal partition function Z N (F) at F = 2. We then order the x variables. This 
may be done in N! equivalent ways. Using the ordering - ( L / 2 )  < x I < x 2 
< . . .  < x  N <  L / 2 g i v e s  

ZN(2 ) = e-l~B~fL/a dXNf~N d X N _ , . . .  ( x2  dx, exp -2~r 0 
a-  L/2 a - L/2 J -  L/2 1 

• f S / ~ 2 d y l  . . .  f w / 2  d 
) - -  W / 2  ~YN 

X ] I  /-I exp (xj + xk) 
j=l  k=j+l 

oxp[ 2 ) 
Notice that the y-dependent part of the integrand is contained in the square 
modulus of a van der Monde determinant. We use the permutation 
notation P { 1 , 2 , . . . , N }  = {P(1),P(2) . . . .  , P ( N ) }  for a permutation 
with signature c(P) to write down the expansion of the determinant and its 
conjugate. This procedure gives 

N - 1  N 
f_w/2 d s  d r-r 

W / 2  ~1 " " " | [YN 11  I-[ 
J-- W / 2  j =  1 k = j +  1 

• i.Y,)] 2 
N! N! N 

= E E e(P)c(Q)I-[ 
e = l  Q=I  j = l  

• exp - ~ [e(j) + Q U )  - 2] 

• FRY~2. f _  2~ri r 
J_ w/aa-'vjexpt -~ -  .,vj[ P(J)  - Q(j ) ]  ]1 

Only permutations for which P( j )  = Q(j) ,  1 < j <. N contribute. 
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We obtain 

N I  

Z N ( 2 ) =  WNexp(_ f lBN)  ~ f_L;Z2dxu~X~,2dxu_l. .  " (x2 dx 1 
P = I  - / - / d - - L / 2  

For permutation P, make the substitution xj = ze(j), 1 < j < N. We then 
have a sum over ordered integrals over the zj. The integrand is the same for 
each permutation and each possible ordering of the zj occurs exactly once. 
Hence, the sum over ordered integrals may be written as an unrestricted 
multiple integral over [ -  L/2 ,  L/2] N. Renaming zj = xj for 1 < j < N and 
using the appropriately defined CN, we obtain 

N 

Z u (2) = WNexp( -- tiC N ) I-I f_L/2 dxj 
j =  1 - L / 2  

Using the correct form of C s we may now take the thermodynamic limit of 
-[logZu(2)]/N to obtain the free energy per particle. We let L - ~  m with 
N / L W  = P and obtain for the free energy 

flf(2) = flf0(2) + M (7) 

where M = vr/6t)W 2 is a Madelung constant for the potential in the 
semiperiodic boundary conditions used here at F = 2. The function f0(2) is 
Jancovici, s (1) thermodynamic limit free energy per particle, 

f0(2) = logoX~ - �89 - � 8 9  (8) 

for the system confined to a disc. Here Xo is the de Broglie wavelength and 
we have set Jancovici 's scaling length L 0 = W/2~r. Equation (6) describes 
the canonical partition function for an assembly of N independent har- 
monic oscillators with mean positions evenly spaced on [ - L / 2 ,  L/2]. 

To calculate the one-particle distribution function we simply leave out 
the integrations over x a n d y .  Define x 0 = - L / 2 ,  xN+ 1 = L /2 ,  and the T e 
ordering as an ordering of the x variables with x 0 < x 2 < x 3 < . �9 �9 < x e 

X 1 < X p +  I ~ " " " < X u < X u +  1 . There are ( N -  1)! orderings, each giv- 
ing the same contribution to p(1)(x,y). We use the van der Monde 
determinant representation of the integrand and carry out the integrations 
over Y2 . . . . .  YN giving P(j)  = Q(j), 2 < j < N, and so P(1) = Q(1) by 
default. Collect all the integrals with P ( 1 ) =  q and change variables with 
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xj = ze(j), 2 << j < N; P( j )  v a q and x I = zq. This generates ordered inte- 
grals with respect to ( N -  l) of the zj, all possible orderings occurring 
exactly once. An unrestricted integral over 

(ZI  . . . . .  Z q - 1  , Z q + l  . . . . .  Z N )  ~ [ - L / 2 ,  L / 2 ]  N-1 

results. The final form for the one-particle distribution function is then 

0 (1 ) ( r ;N)=  --~ ~ exp -2~" 0 x 1 ~- 1 2q_~ / I ( q , L , N )  
q = l  

(9) 
where 

' qL   rLJ2 exp{ 2 PEx L(I kLJ2 2qlN 12) (10) 

This pair of formulas is remarkable in that it gives a closed-form result 
for the one-particle distribution function, even for a finite system. The 
result is simpler than the one-dimensional case. (12) Our method reduces the 
system to a set of N independent harmonic oscillators by using the 
second-ordering transformation xj~Zp(j)  described above. In the one- 
dimensional case this second transformation does not appear  and that 
system reduces to a set of N-ordered but otherwise independent harmonic 
oscillators. A connection with the one-dimensional system may be seen in 
the I X  1 - -  X2[ term in the pair potential in Eq. (4). 

To obtain the two-particle distribution function, the x I, Yl and x2, Y2 
integrations must be omitted. The integrations are written as sums over 
Tp,Fordered x integrations. Under  Tp,p~ we have 

X 0 ~ X 3 < " �9 " < Xp, ~ X 1 < X p , + l  ~ " " " ~ Xp2 

< x2<xe~+l < " '"  < x,,< xN+ !. 

We may have p~ = P2 and then must consider both x I < x 2 and x 2 < x 1 . 
When the y integrations are performed on the van der Monde determinant 
representation of the y-dependent  part  of the integrand, the condition 
P(j )  = Q(j), 3 <<. j < N is obtained. 

There are two classes of terms: those with P(1)= q~, P ( 2 ) =  q2, 
Q(1) = ql, Q(2) = q2 in which case e(P)  = e ( Q )  and those with P(1) = ql, 
P(2) = q2, Q(1) = q2, Q(2) = ql when e(P)  = - e ( Q ) .  A sum over ql and 
q2 E [1,N] must be constructed with ql :/: q2. Examination of the sum 
shows that the ql = q2 terms would be zero, so they are included. The sum 
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may then be factorized to give 

P(2)(r] ,r  2 ; N )  = Pcl)(r] ; N)P(,)(r  2 ; N )  - W-2exp[  - ~zO(x ~ - x2) 2] 

• q~__ exp{-2~o[X ' ;  x2 i ( 1 -  2 q ; 1 ) ]  2 

L'N) 2 + 2~riq(yl -y2)/w / I ( q ,  (11) 

We may now consider the limit N ~  oo, L ~  oo such that 0 = N/LW 
is constant, in which we obtain the infinite strip system distribution 
functions 0(~)(r) and &z)(r],r2). It is convenient to introduce X=y/w, 

= oW 2 and ~ = x(/W. The parameter ( measures the number  of particles 
in a square of side W. We obtain a thermodynamic limit for the states in 
two subsequences, N = 2M + 1 and N = 2M. The results may be written 

1 F(~, ~) (12a) p ( l ) ( W ~ / ~ )  = 

and 

< ) o(:) ~ , ~ ,X 

1 ;X;~))} 
_ W 41 { F ( [ 1 , ~ ) F ( ~ 2 , ~ ) _ e x p [  - ~ ( ~ 1 _ ~ 2 ) 2 ] G ( . ~ ( ~ 1 +  f2 

(12b) 

On the thermodynamic limit subsequence N = 2M + 1 we have 

F(~' ,~)=(2~) '/2 k e x p [ - 2 e ( / - f ) 2 / ~ ]  (13o) 
[= -oo  

and 
2 

G(~'; 2t; 4) = 24 ,=~- o~ exp[ - 27 r ( / -  ~" )2/4 + 2~rilX] (14o) 

On the limit subsequence N = 2M we have 

F ( f , ( ) = ( 2 ( )  '/2 k e x p [ - 2 ~ z ( / + � 8 9  (13e) 
l=  --o~ 

and 
2 

G(~' ;X;~)=2~ t y  e x p [ - 2 ~ ' ( l + � 8 9  (14e) 
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Fig. 1. Plots of p(~) = F(~,~)/F(O,~) for - 1/2 < ~" < 1/2. From the bottom upwards the 
curves are for ~ -- 1.0, 2.0, 2~/3. 

Note that the system is inhomogeneous and periodic in the x direction. 
The inhomogeneity results from the n = 0 term in the Fourier series for the 
potential, which behaves as a potential for a one-dimensional one- 
component plasma, also known to be periodic. The function F(~, ~) has 
unit period in ~', which means that the period of p(1)(x) is W/~ = 1/pW. As 
W ~  oo at p fixed, the period decreases to zero, as expected. We plot 

1 1 F(~,~)/F(O,~) ~--p(~) for ~" E [ - ~ , ~ ]  in Fig. 1 for three values of 4. At 
= 1 the density profile shows strongly developed layers. The layers are 

much less prominent at ~ = 2, and at ~ = 2~- the effect is almost absent. 
Thus as ~ increases at fixed p because W increases, we see that the density 
becomes constant, the correct behavior for the W ~  oo bulk limit. How- 
ever, for all ~ the one-particle distribution function, in the thermodynamic 
limit of an infinitely long strip, is a nonconstant periodic function. 

Define now the functions 

and 

H(~'; X; ~) = F(O, ~)F(~', ~) - exp( - ~r~'2/~)G(l~'; )t; ~) 

Ho( ; X; f) = X; r  �89 ; r 
so that H0(~; ~; ~) is a scaled two-particle distribution function. We plot 
contours of H0(~'; X; ~) in Figs. 2a, b, c, d. 

At small ~, the particles clearly lie in ridges normal to the x axis with 
very little correlation between the particles in each ridge. Near ~ = 2 the 
particles show some tendency to take up an alternating structure in the ~', h 
plane at (0,0),(1,�89 . . . . .  a structure reminiscent of a solid. The 
strong peak at (1,1) for ~=  2 is a particularly good example of this 
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Fig. 2. Plots of contours of  H 0 ( ~ , X , ~  ) from left to right. O O O O O :  contour H0(~ ,X ,~  ) = 
0.01;  I H t Q O O :  c o n t o u r  H0(~,  X, f ) =  0.02;  . . . . . . . .  : c o n t o u r  H o ( f , X  , 4 ) =  0.2; . . . . .  : c o n -  

t o u r  Ho(ff, X , ( )  = 0.4;  : c o n t o u r  H0(~ ' ,X, ( )  = 0.6; . . . . . . .  : c o n t o u r  H0(ff, X,~) = 0.8; 

- - :  c o n t o u r  H0(~' ,X,~ ) = 0.9. a :  ~ = 1.0; b:  ~ = 2.0; e: ~ = 2~/3; d:  f = 4. 

alternating structure. At larger 4, the particles become too crowded to 
sustain such an ordered structure. A cross section H0((; �89 is plotted in 
Fig. 3 and confirms this picture. 

The consequences of these results for the theory of the simulation of 
ionic systems in general are not clear. It is certainly true that the layered 
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Fig. 2. Continued. 

structures have been observed in Monte Carlo simulations of systems of 
hard spheres with embedded point charges. (13-15) It is also tempting to 
identify some of the problems encountered in early simulations of charged 
systems (16,17) with similar effects. 

Finally, a recent paper of Gruber and Martin (18) shows that J ~ -  
clustering equilibrium states of classical systems of point particles are 
translationally invariant and specifically notes the case of a one-component 
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Fig. 3. Plots of H0(~, 1/2,~) from bottom to top: ~ = 1.0, ~ = 2.0, ~ = 2~/3, ~ = 4.0. 

plasma in dimension d/> 2. We note here that the proof for the two- 
dimensional one-component plasma requires that the interparticle force 
tend to zero at large separation. Here, as [xj - xk[ ~ ~ ,  the x component of 
this force tends to -~r  sgn( [x j -  Xk[)/W. Thus the theorem is not applica- 
ble to this system. 
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